sábado, 30 de noviembre de 2013

DISTRIBUCIONES DISCRETAS

Distribuciones discretas: Bernouilli
Distribuciones discretas: Bernouilli
Es aquel modelo que sigue un experimento que se realiza una sola vez y que puede tener dos soluciones: acierto o fracaso:
Cuando es acierto la variable toma el valor 1
Cuando es fracaso la variable toma el valor 0
Al haber únicamente dos soluciones se trata de sucesos complementarios:
A la probabilidad de éxito se le denomina "p"
A la probabilidad de fracaso se le denomina "q"
Verificándose que:
p + q = 1
Ejemplo: Probabilidad de salir cara al lanzar una moneda al aire (sale cara o no sale); probabilidad de ser admitido en una universidad (o te admiten o no te admiten); probabilidad de acertar una quiniela (o aciertas o no aciertas)

Distribuciones discretas: Binomial

La distribución binomial se aplica cuando se realizan un número"n" de veces el experimento de Bernouiili, siendo cada ensayo independiente del anterior. La variable puede tomar valores entre:
0: si todos los experimentos han sido fracaso
n: si todos los experimentos han sido éxitos
Ejemplo: se tira una moneda 10 veces: ¿cuantas caras salen? Si no ha salido ninguna la variable toma el valor 0; si han salido dos caras la variable toma el valor 2; si todas han sido cara la variable toma el valor 10
La distribución de probabilidad de este tipo de distribución sigue el siguiente modelo:
Descripción: http://www.aulafacil.com/CursoEstadistica/Nueva%20carpeta/Lecc-28-1.gif
Ejemplo 1: ¿Cuál es la probabilidad de obtener 6 caras al lanzar una moneda 10 veces?
" k " es el número de aciertos. En este ejemplo " k " igual a 6 (en cada acierto decíamos que la variable toma el valor 1: como son 6 aciertos, entonces k = 6)
" n" es el número de ensayos. En nuestro ejemplo son 10
" p " es la probabilidad de éxito, es decir, que salga "cara" al lanzar la moneda. Por lo tanto p = 0,5
La fórmula quedaría:
Descripción: http://www.aulafacil.com/CursoEstadistica/Nueva%20carpeta/Lecc-28-2.gif
Luego,   P (x = 6) = 0,205
Es decir, se tiene una probabilidad del 20,5% de obtener 6 caras al lanzar 10 veces una moneda.
Distribuciones discretas: Poisson
Las distribución de Poisson parte de la distribución binomial:
Cuando en una distribución binomial se realiza el experimento un número "n" muy elevado de veces y la probabilidad de éxito "p" en cada ensayo es reducida, entonces se aplica el modelo de distribución de Poisson:
Se tiene que cumplir que:
" p " < 0,10
" p * n " < 10
La distribución de Poisson sigue el siguiente modelo:
Descripción: http://www.aulafacil.com/CursoEstadistica/Nueva%20carpeta/Lecc-29-1.gif
Vamos a explicarla:
El número "e" es 2,71828
l " = n * p (es decir, el número de veces " n " que se realiza el experimento multiplicado por la probabilidad " p " de éxito en cada ensayo)
" k " es el número de éxito cuya probabilidad se está calculando
Veamos un ejemplo:
La probabilidad de tener un accidente de tráfico es de 0,02 cada vez que se viaja, si se realizan 300 viajes, ¿cual es la probabilidad de tener 3 accidentes?
Como la probabilidad " p " es menor que 0,1, y el producto " n * p " es menor que 10, entonces aplicamos el modelo de distribución de Poisson.
Descripción: http://www.aulafacil.com/CursoEstadistica/Nueva%20carpeta/Lecc-29-2.gif
Luego,
P (x = 3) = 0,0892
Por lo tanto, la probabilidad de tener 3 accidentes de tráfico en 300 viajes es del 8,9%







No hay comentarios:

Publicar un comentario